Positive Solutions and Mann Iterative Algorithms for a Second-Order Nonlinear Difference Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbounded Positive Solutions and Mann Iterative Schemes of a Second-Order Nonlinear Neutral Delay Difference Equation

and Applied Analysis 3 Then (a) for any L ∈ (N,M), there exist θ ∈ (0, 1) and T ≥ n 0 + τ + β such that for each x 0 = {x 0n } n∈N β ∈ A(N,M), the Mann iterative sequence with errors {x m } m∈N 0 = {x mn } (m,n)∈N 0 ×N β generated by the scheme

متن کامل

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

in this paper we consider the second order nonlinear neutral delay partial difference equation $delta_ndelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$under suitable conditions, by making use of the banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

Existence and Iterative Algorithms of Positive Solutions for a Higher Order Nonlinear Neutral Delay Differential Equation

and Applied Analysis 3 (d) if ∫+∞ c ∫ +∞ u uG(s, u)ds du < +∞, then ∞ ∑ j=1 ∫ +∞ t+jτ ∫ +∞ u G (s, u) ds du ≤ 1 τ ∫ +∞ t+τ ∫ +∞ u uG (s, u) ds du < +∞, ∀t ≥ c. (10) Proof. Let [t] denote the largest integral number not exceeding t ∈ R. Note that lim r→+∞ [(r − c) /τ] + 1 r = 1 τ , (11) c + nτ ≤ r < c + (n + 1) τ ⇐⇒ n ≤ r − c τ < n + 1, ∀n ∈ N0. (12) Clearly (12) means that ∞ ∑ j=0 ∫ +∞

متن کامل

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces

سال: 2016

ISSN: 2314-8896,2314-8888

DOI: 10.1155/2016/8317567